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Abstract The concept of entropy conservation, stability, and consistency is applied to sys-
tems of hyperbolic equations to create new flux functions for the scalar and systems of
conservation laws. Firstly, Burgers’ equation is modelled, followed by the Navier–Stokes
equations. The new models are compared with the pre-existing entropy consistent fluxes at
selected viscosity levels; it is found that the system flux requires additional entropy produc-
tion at low viscosities, but not at higher viscosity values. Initial results herein demonstrate
that the accuracy of the first order systems approach are comparable to the results produced
by the original entropy-consistent Navier–Stokes flux.

Keywords Shock capturing · Navier–Stokes flux · Entropy consistency ·
Entropy production · First-order systems

1 Introduction

Even now, diffusion via entropy generation is still an underdeveloped facet of the shock
capturing scheme. Since the elucidation of the entropy stability concept in Tadmor [17], the
deployment of entropy control as an additional constraint to the governing equations of fluid
flow has been widespread. These include the work of Fjordholm et al. [2,3,5]. Amongst the
various schemes that apply such a method, the entropy consistent flux formulation available
originally in Roe [16] (revisited in Ismail [7]) and further extended in Ismail and Roe [8]
remains an interesting proposition for its low cost and stability, as shown subsequently in
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Kitamura et al. [9]. However, this flux function still has room for improvement, since the
amount of entropy actually generated particularly when solving the Navier–Stokes equations
may differ from the entropy production predicted by the Euler flux as found in Mohammed
and Ismail [11]. Therein, it is shown that the entropy–stability term alone is sufficient for
most physical viscosity values, and that the entropy consistency (third term) is only needed
for relatively low viscosity values (high Reynolds number flow). Despite this, it would make
sense to continue the search for a ‘truer’ means of modelling diffusion, using more of physical
viscosity such as in Tadmor and Zhong [18,19] to facilitate entropy generation and less
dependent on artificial viscosity methods.

1.1 Entropy Conservation, Entropy–Stability and Entropy–Consistency

Following [8], for any hyperbolic system of conservation laws satisfying:

ut + fx = 0 (1)

or in integral form ∮
(udx − fdt) = 0 (2)

there is an additional entropy U constraint satisfying

Ut + Fx ≤ 0 (3)

with the integral form ∮
(Udx − Fdt) ≤ 0 (4)

The inequality is to cater for discontinuous flow where entropy is produced. Note that entropy
is conserved for smooth flows thus equality is achieved. For ideal gas dynamics, the entropy
pair (U, F) that can be used for both the Euler and Navier–Stokes equations [6] only if
U = − ρS

γ−1 , F = − ρuS
γ−1 where S = lnp − γ lnρ is the physical entropy. The negative sign

in U is a mathematical convention to ensure that the entropy satisfying Eq. (3) is decreasing
which is the opposite to the nature of physical entropy. Alternatively, the entropy production
in a domain Ω with boundary ∂Ω can be written as

U̇ =
∫ ∫

Ω

(Ut + Fx )dxdt =
∮

∂Ω

(Udx − Fdt) (5)

for which U̇ = 0 implies entropy conservation and that U̇ < 0 denotes entropy is decreasing
(or entropy–stable).

In a discrete form of the governing equations, the conservation laws of Eq. (2) must
be satisfied and that zero entropy production must be observed for smooth flows. A discrete
approach satisfying this proposition is deemed as an entropy–conserved method. On the other
hand, a discrete method solving Eq. (2) is defined as entropy–stable if it always produces a
decreasing entropy production. Entropy–stability however, only guarantees that the discrete
approach produces the correct sign of entropy production but not necessarily the correct
amount. If a discrete approach produces the “correct” amount of entropy generation, then it
is defined as an entropy–consistent method. Achieving entropy–conservation and entropy–
stability are quite straightforward since they are both enforced locally within a cell as will
be shown in Sects. 2 and 3. Unfortunately, that is not the case for entropy-consistency since
shocks will be captured over several cells and the required total entropy have to be generated
over more than one cell. Unlike entropy conservation, the problem is no longer local thus
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it is quite hard in general to determine the precise amount of entropy generation. Too much
of entropy generation would cause a smearing of the discontinuous profile while too little
entropy production would give rise to oscillatory behavior around the discontinuity. To the
authors’ best knowledge, there is yet a solid analytical relation between entropy production
and shock quality although some form of approximation model has been done for the inviscid
approach in Ismail and Roe [8]. Thus, all we seek is just a “sensible” shock profile and that
much of the work herein relies on numerical experiment to achieve entropy–consistency.

1.2 Advantages of the First-Order System

A major obstacle in incorporating physical viscosity lies in the nature of its high-order
relationship with other conserved variables. This leads to a difficulty of the inviscid part of the
governing equation having a hyperbolic basis, and the viscous part with its parabolic affinity.
An answer for this quandary is tackled through the deployment of first-order system fluxes, as
shown in Nishikawa [12]. This line of thought has been continued through a series of articles
in Nishikawa [13–15], amongst others. The advantages of this method include having a fully
hyperbolized advection–diffusion model (i.e. leading to explicit time integration methods)
and a faster rate of convergence, leading to relatively cheap costs. However, this method does
have a limitation in that for transient problems, the additional hyperbolic equations which
govern the viscosity would need to achieve steady-state before marching forward in time,
and thus would require sub-iterations for each time step.

In this paper, the authors will attempt to combine the ideas of entropy–stability (and
consistency) with the concept of the first-order system, with the hope of harnessing the best
of both methods. The newly synthesized fluxes are then applied to steady problems to observe
the evolution of entropy in the pseudo-transient computation towards the steady state.

2 System Flux for Burgers’ Equation

Consider the governing equation for advection and diffusion:

ut + fx = νuxx (6)

A subset of this is the Burgers’ equation, in which u and f are scalars:

ut + fx = νuxx , fx =
(

u2

2

)
x

(7)

To discretize an entropy consistent flux based on this equation, a mapping from the con-
served variables to the corresponding entropy equation is sought.

2.1 Entropy Conservative Flux

Following the work of Ismail and Roe [8], the inviscid part of the equation is discretized
using a semi-discrete finite volume method, such that(

∂u

∂t

)
j
Δx = −

(
f j+ 1

2
− f j− 1

2

)
(8)

where f j± 1
2

= f ∗ are the fluxes to be evaluated at the respective interfaces. In a dual-cell
system, this equation can be viewed from a residual distribution approach thus split into two
parts:
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hL
∂uL

∂t
= fL − f ∗ (9a)

h R
∂u R

∂t
= f ∗ − fR (9b)

The variable h is the length of each cell, while the subscripts L and R denotes the left and
right states respectively. In order to establish entropy conservation, a convex entropy function
U (u) is introduced, along with its associated entropy variable v, and an entropy flux F(U )

satisfying Eq. (4). We define U = u2, v = ∂U
∂u , and F = 2

3 u3, and substitute the original
variables in Eq. (9) with these terms, yielding:

hL
∂UL

∂t
= vL( fL − f ∗) (10a)

h R
∂UR

∂t
= vR( f ∗ − fR) (10b)

To determine the change of entropy within each cell, the sum of both parts of Eq. (10) is
required:

∂

∂t
(hLUL + h RUR) = (vL fL − vR fR) + (vR − vL) f ∗

= −[v f ] + [v] f ∗ (11)

where [v] = vR − vL . Similarly, the total entropy change predicted by the entropy conser-
vation law would be:

∂

∂t
(hLUL + h RUR) = FL − FR = −[F]. (12)

It is not guaranteed that each local entropy flux would always add up to the global entropy
change. For the correct physics of entropy to remain true, the change of the discrete fluxes
in Eq. (11) should at least be a match to the fluxes in Eq. (12), and the difference between
the two quantities must be accounted for in the form of the entropy production U̇ as stated
in Eq. (5) [16]:

U̇ = [F] + ([v] f ∗ − [v f ]). (13)

To get a conservative flux, f ∗ can be chosen so that the local and system entropy fluxes
balance out exactly. For Burgers’ equation, f = 1

2 u2, producing the entropy conserved flux
f ∗
c

f ∗
c = 1

6

(
u2

L + u RuL + u2
R

)
(14)

2.2 Entropy–Stable and Entropy–Consistent Fluxes

However, as mentioned in Sect. 1.1, only having conservation may not be enough, since
entropy would naturally occur for all irreversible processes. Hence, more are built into the
flux, leading to the entropy consistent form recommended in Ismail and Roe [8]:

f ∗ = f ∗
c − 1

2
(|a| + α|[a]|)[u] (15a)

= f ∗
c − 1

2
(|a| + α|[a]|)du

dv
[v] (15b)
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Using Eq. (13), the entropy generation thus becomes

U̇ = −1

2
(|a| + α|[a]|)du

dv
[v]2 � 0. (16)

In this equation, a is the arithmetic averaging of velocity at the interface having left and right
cell values, whilst α is an analytically determined parameter [8]. Notice that the production
term is made up of components that are invariably positive. Considering its entropy conser-
vative nature, the fact that the entropy production would always have the correct sign means
the flux definitely satisfies the entropy inequality of Eq. (4). The flux is deemed entropy con-
sistent by virtue of producing enough entropy, both artificially generated by the inviscid flux
and physically sourced by the discrete viscous part of Burgers’ equation usually via central
differencing. Thus, the overall entropy production for the flux of Eq. (15) depends only on
the physical and numerical viscosities:

U̇ = −1

2
(|a| + α[a])du

dv
[v]2 − ν

Δx
[u][v]

= −1

2
(|a| + α[a])du

dv
[v]2 − ν

(2Δx)
[v]2 (17)

The diffusive term is constructed based on a generalized expression for physical viscosity
(from Eq. 7), which is then discretized and multiplied by [v] to map it as entropy production.
Again U̇ � 0, satisfying the entropy inequality.

2.3 First-Order Hyperbolic System

The Burgers’ equation can be written in the alternative form of a first-order system:

ut + fx = q (18)

The vectors are defined as:

u =
[

u
d

]
, f =

[
u2/2 − νd

−u/Tr

]
, q =

[
0

−d/Tr

]
(19)

with d = ∂u
∂x . The quantity Tr is the relaxation time. The eigenvalues for the system of

equations satisfying (18) and (19) are

Λ =
[

λ1 0
0 λ2

]
, λ1,2 = 1

2

(
u ±

√
u2 + 4

ν

Tr

)
(20)

representing the characteristic waves speeds for u, d . These eigenvalues can be stated as:

λ1 = 1

2

(
u1 +

√
(u1)2 + 4

ν

Tr

)
, λ2 = 1

2

(
u2 −

√
(u2)2 + 4

ν

Tr

)
(21)

where we have introduced two velocities (u1, u2) for discretization purposes as will be shown
later in this subsection. Note that for ν = 0, the eigenvalues reduces to just one nonzero
quantity (λ1 = u) which represents the pure transport of the inviscid Burgers equation.

The right eigenvectors R are defined as:

R =
[ −λ1Tr −λ2Tr

1 1

]
(22)

The value of Tr is proportional to L2
r

ν
, and hence would have a low but finite value to reflect

proximity to equilibrium conditions for diffusion, as opposed to frozen (high relaxation time).
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After doing some manipulation of Tr , [13] presented an alternative set of eigenvalues and
eigenvectors based on the local Reynolds number and relaxation length (Lr ). However, from
now onwards we shall assume that Tr is a constant number set to unity. This assumption
will only remain valid for steady computations, as the accuracy of the hyperbolic system in
modelling the original equation relies on the condition that the relaxation time is sufficiently
small [12].

From this model, the aim is to obtain an entropy consistent flux function in the same vein
as the scalar Burgers’ equation. To achieve this, we need to define an entropy function that
has some measure of “total energy” based on the primary variable u and its auxiliary term d .
We seek to control this “total energy” through the concept of entropy conservation, entropy
stability and entropy consistency. Based on the work of [6], we define an entropy pair (U, F):

∂U

∂u
∂f
∂u

= ∂ F

∂u
(23)

where

U = Ui + Uv = u2 + νd2, F = Fi + Fv =
(

2

3
u3

)
− 2νud (24)

satisfying the entropy constraint given in Eq. 4. The entropy pair (U, F) are purposefully
chosen to be convex functions so as to allow for one-to-one mapping. For ν = 0, this
governing entropy equation will collapse into the original entropy equation for the inviscid
Burgers’ equation. The entropy variables are now defined as:

v = ∂U

∂u
=

[
2u

2νd

]
(25)

The total flux at the interface combines both the inviscid flux f̂i and the viscous flux f̂v in
a discrete form that is originally derived in Barth [1] and modified to its current variation in
Ismail and Roe [8]:

f∗ = f̂i + f̂v − 1

2
R̂|Λ̂Ŝ|R̂T [v] (26)

where the accented ‘ˆ’ variables represent discrete averaged quantities. The expression at the
tail end of the right hand side of Eq. (26) is the dissipation matrix, whose job is to maintain
the stability via proper entropy generation for the flux.

The scaling parameter S is a diagonal matrix to the convert the numerical diffusion based on
the wave-characteristics RΛR−1du into a numerical diffusion based on the entropy–variables
v, which is entropy–stable. The idea originally came from Barth [1]. At the differential level
RΛR−1du = RSRTdv is true as proven in Roe [16] and most recently in Fjordholm et
al. [4]. S is merely a multiplier to ensure proper mapping of numerical diffusion based on
conserved variables to entropy–variables is analytically correct; the system’s eigenvalues
and eigenvectors remain unchanged even with its addition [4]. Note that for a smooth flow,
the numerical diffusion based on the entropy–variables similarly behaves to diffusion using
the conserved–variables. The two approaches differ when the flow is non-smooth, and this
is critical in terms of achieving proper entropy generation in which the entropy–variables
approach is more physical. The scaling parameter S is:

Ŝ =
⎡
⎣

λ̂2
2+ν

2ν(λ̂1−λ̂2)2+ε
− λ̂1λ̂2+ν

2ν(λ̂1−λ̂2)2+ε

− λ̂1λ̂2+ν

2ν(λ̂1−λ̂2)2+ε

λ̂2
1+ν

2ν(λ̂1−λ̂2)2+ε

⎤
⎦ (27)
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A very small coefficient ε = 1.0 × 10−10 has been added to the denominators to prevent
the function from dividing by zero.

The discrete inviscid and viscous fluxes are arranged as:

f̂i =
[

u2∗
1
0

]
, f̂v =

[ −νd∗
−u∗

2

]
(28)

where the accent ‘∗’ denote the averaged interface values to be determined. Note that we
have defined two averaged quantities for the velocities (u∗

1, u∗
2).

To achieve entropy conservation, recall how the scalar cell flux in Eq. (11) is equated to
the total flux of Eq. (12). The procedure is now applied to the system’s approach, by replacing
the scalar variables with vectors:

[v]T f∗ − [v · f] = −[F]. (29)

Note that this is an under-determined equation hence there will be more than one set of
solutions. However, only one set of solutions are needed to explicitly determine the averaged
quantities. The previous equation when expanded becomes

[2u]u2∗
1

2
− 2ν[u]d∗ − 2ν[d]u∗

2 − [u3] + 2ν[ud] + 2ν[ud] = −2

3
[u3] + 2ν[ud]

([u]u2∗
1 − [u3]) + (2ν[ud] − 2ν[u]d∗ − 2ν[d]u∗

2) = −2

3
[u3]. (30)

Using the identity [ab] = a[b] + b[a], the equation reduces to

[u]u2∗
1 + 2ν(u[d] + d[u]) − 2ν[u]d∗ − 2ν[d]u∗

2 = 1

3
[u] (u2

L + uL u R + u2
R

)
. (31)

By equating the terms on the left hand side to the right hand side of equation, the inviscid
entropy conserved flux formulation is recovered, u∗

1 = 1
3 (u2

L +uL u R +u2
R). And by choosing

u∗
2 = u and d∗ = d , the whole equation cancels out thus obtaining entropy conserved fluxes

for the inviscid and viscous parts.

f̂i =
[ 1

6

(
u2

L + uL u R + u2
R

)
0

]
, f̂v =

[ −νd
−u

]
. (32)

The total entropy production based on the flux discretization ( f ∗) in Eq. (26) and including
the source terms is

U̇ = [v]T f∗ − [v · f] + [F] + v · q

= −1

2
[v]T R̂|Λ̂Ŝ|R̂T [v] − 2νd2 ≤ 0 (33)

which ensures that the entropy defined in Eq. (24) is decreasing since the product of the first
term on the right hand side is a positive definite matrix and that the second term (representing
the source terms) is always decreasing. Although the first order system is different from
the conventional approach of advection-diffusion problem but the former still produces the
proper entropy generation. Define

Λ̂EC S1 =
[

λ̂1 0
0 λ̂2

]
(34)

to represent the wave speeds for ECS1 method.
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To achieve entropy–consistency, one viable approach is to utilize the analytically deter-
mined entropy–consistent method for Burgers equation recommended by Ismail and Roe [8]:

Λ̂EC S2 =
[

λ̂1 + 1
6 |[λ1]| 0
0 λ̂2 + |[λ2]|

]
(35)

where herein stated as the ECS2 method.

3 Navier–Stokes System Flux

The first order system is then extended to the Navier–Stokes equations (without heat) in the
manner prescribed by Nishikawa [14]. Consider the conservation law with source terms:

ut + fx = B (36)

where

u =

⎡
⎢⎢⎣

ρ

ρu
ρE
τ

⎤
⎥⎥⎦ , f = fi + fv =

⎡
⎢⎢⎣

ρu
p1 + ρu2

ρu H
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
−τ

−τu
−μv

Tv
u

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0
0
0

− τ
Tv

⎤
⎥⎥⎦ , τ = 4

3
μ

∂u

∂x
(37)

The heat transfer component is removed to concentrate on the effect of the viscous term. The
scaled viscosity μv and the relaxation time Tv are defined in the following with subscript v

denoting viscous stress:

μv = 4

3
μ, Tv = L2

νv

, νv = μv

ρ
. (38)

L is a length scale, whilst νv is the kinematic viscosity. Similar to the Burgers’ equation
in the previous section, the length scale and relaxation time mentioned here result in an
approximation of the viscosity term only in steady state. Following Nishikawa [14], the first
order system for Navier–Stokes equation can be rewritten as

P−1 ∂u
∂t

+ ∂f
∂x

= B, P−1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 Tv

μv

⎤
⎥⎥⎦ . (39)

The matrix P is a local preconditioning for the viscous stress. Since both P and B matri-
ces affect only the auxiliary equations in the system, Eq. (39) can still be considered as
conservative.

The next step is to construct an entropy function which depends on both the inviscid and
viscous fluxes similar to the strategy used for the Burgers equation. Since U = −ρS/(γ −1)

is the only entropy function from Euler equations that can be extended to the Navier–Stokes
equations [6], it is chosen to represent the inviscid fluxes. On the other side, the viscous entropy
functions must be of the form of the viscous stresses (τ ) and the temperature gradients (q).
For this paper, we concentrate on the effects of viscosity by eliminating the influence of heat
transfer from the system, meaning that q = 0. Overall, these entropy functions are defined as:
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Ui = − ρS

γ − 1
, Uv = τ 2 + ρu2 (40)

with its fluxes defined as

Fi = − ρuS

γ − 1
, Fv = −2uτ (41)

where the viscous part for entropy measures some form of “energy” of the system. As before,
the entropy pair (U, F) are convex functions [6]. However, unlike the Burgers equation in
which entropy is viewed as one parameter consisting the summation of inviscid and viscous
parts, the Navier–Stokes entropies are two different entities that are practically untied from
each other. This is due to the philosophy espoused by Nishikawa [14] and adopted in this
paper specifically for the Navier–Stokes model, which is to treat the inviscid and viscous
portions of the equations as two independent entities in an interconnected hyperbolic system.
Thus, defining the function and the fluxes in this way means that each type would only need
to adhere to the entropy conditions of their own respective systems, one for the inviscid
(physical) and the other for the viscous part. As such, both Ui and Uv independently satisfy
the entropy inequality, and the constraint of the entropy pair theorem given in Eq. (23) from
[6]. Following that, the entropy variables and its discrete fluxes are split into two separate
parts:

vi = ∂Ui

∂u
, vv = ∂Uv

∂u
, f̂ = f̂i + f̂v (42)

The inviscid variables are defined as:

vi =

⎡
⎢⎢⎢⎣

γ−S
γ−1 − 1

2
ρu2

p
ρu
p

− ρ
p

0

⎤
⎥⎥⎥⎦ , f̂i =

⎡
⎢⎢⎣

ρ̂û1

p̂1 + ρ̂(û1)
2

ρ̂û1 Ĥ
0

⎤
⎥⎥⎦ (43)

The flux f̂ consists of averaged quantities (denoted by the accent â in general) that are to
be determined by ensuring entropy is conserved. Similar to Eq. (29), entropy conservation
requires

[vi ]T f̂i − [vi · fi ] = −[Fi ] (44)

Using the identity [vi · fi ] − [Fi ] = [ρu], the previous equation becomes

[vi ]T f̂i = [ρu] (45)

By choosing the averaged quantities as given in “Appendix 1”, the discrete inviscid fluxes
conserve the inviscid part of entropy Ui as shown in Ismail and Roe [8]. The remaining
averaged quantity for the flux of τ is now determined, starting with the viscous entropy
variables and discrete fluxes:

vv =

⎡
⎢⎢⎣

−u2

2u
0

2τ

⎤
⎥⎥⎦ , f̂v =

⎡
⎢⎢⎣

0
−τ ∗

−τ ∗u∗
2−μv

Tv
u∗

2

⎤
⎥⎥⎦ . (46)
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The intent here is to control the viscous numerical fluxes to conserve ‘entropy’ and not to
generate more of it. As before, the entropy balance is enforced through the expression:

[vv]T f̂v − [vv · fv] = −[Fv] (47a)

− [2u]τ ∗ − [2τ ]μv

Tv

u∗
2 + [2uτ ∗] +

[
2τ

μv

Tv

u∗
2

]
= [2uτ ] (47b)

− [u]τ ∗ − μv

Tv

[τ ]u∗
2 +

[
μv

Tv

τu∗
2

]
= 0. (47c)

Define the arithmetic averaging as a and using the identity [ab] = a[b]+b[a], the equation
expands to

− [u]τ ∗ − μv

Tv

[τ ]u∗
2 + μv

Tv

([τ ]u + τ [u]) = 0 (48)

which gives

τ ∗ = μv

Tv

τ , u∗
2 = u. (49)

Similar to the Burgers’ equation model, the complete discrete fluxes would have the form:

f∗ = f̂i − 1

2
R̂i |Λ̂i Ŝi |(R̂i )

T [vi ] + f̂v − 1

2
R̂v|Λ̂v Ŝv|(R̂v)

T [vv]. (50)

These dissipation matrices are diagonalized from their respective flux Jacobians, which
is obtained by setting A = ∂f

∂u . For the viscous fluxes:

Av = ∂fv
∂u

=

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −1
τu
ρ

− τ
ρ

0 −u
u
ρ

− 1
ρ

0 0

⎤
⎥⎥⎦ (51)

From Ai and Av , the averaged eigenvalues Λ̂i and Λ̂v are calculated to be:

Λ̂i =

⎡
⎢⎢⎣

û − â 0 0 0
0 û 0 0
0 0 û + â 0
0 0 0 0

⎤
⎥⎥⎦ , Λ̂v =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 − 1

ρ1/2
0

0 0 0 1
ρ1/2

⎤
⎥⎥⎥⎦ (52)

The eigenvalues for the inviscid part consist of the two acoustic waves and an entropy wave
with the viscous eigenvalues indicating two waves of the same magnitude but travelling
in the opposite direction, similar to the eigenvalues in Nishikawa [14].These two non-zero
eigenvalues in the viscous part will contribute to the overall numerical dissipation as in
Eq. (50). The components of both sets of eigenvalues consist of entropy–conserved averaged
quantities identical to those defined in Ismail and Roe [8]. Alternatively the eigenvalues can
be chosen to achieve entropy–consistency following the recommendations from Ismail and
Roe [8], where the EC1 and EC2 fluxes therein would be referred to as ECS1 and ECS2
when combined with the hyperbolic system flux in this paper:
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Λ̂i,EC S1−N S =

⎡
⎢⎢⎣

(û − â) + 1
6 |[u − a]| 0 0 0

0 û 0 0
0 0 (û + â) + 1

6 |[u + a]| 0
0 0 0 0

⎤
⎥⎥⎦ (53)

Λ̂i,EC S2−N S =

⎡
⎢⎢⎣

β(û − â) + α2|[u − a]| 0 0 0
0 û 0 0
0 0 β(û + â) + α2|[u + a]| 0
0 0 0 0

⎤
⎥⎥⎦ (54)

In the ECS2 flux, β = 1 + 1
6 and α2 = (αmax − αmin)(max(0, sign(d Mmax − [M]))) +

αmin , where αmax = 2.0, αmin = 1
6 , and d Mmax = 0.5 It follows that the associated

averaged linearly independent right eigenvectors Ri and Rv corresponding to the inviscid
and viscous eigenvalues are:

R̂i =

⎡
⎢⎢⎣

1 1 1 0
û − â û û + â 0

Ĥ − ûâ 1
2 û2 Ĥ + ûâ 0

0 0 0 0

⎤
⎥⎥⎦ , R̂v =

⎡
⎢⎢⎣

0 1
ū 0 0

0 1 ρ1/2 −ρ1/2

1 0 τ̄ + ρ1/2ū τ̄ − ρ1/2ū
0 0 1 1

⎤
⎥⎥⎦ (55a)

In the viscous set of eigenvectors, the averaged variables τ̄ and ū are “entropy–conserving”
quantities derived from Eq. (49). The inviscid eigenvectors are identical to the one determined
by Ismail and Roe [8], excluding the extra row and column of zero-vectors due to the presence
of the viscous transport equation.

The first two rows of the viscous dissipation matrix will not affect the overall dissipation
since the first two eigenvalues are zero. Thus the viscous scaling matrix are computed such
that only the last two rows are determined (the rest are set to zeros) satisfying the differential
relations of R−1

v du = SvRT
v dvv as similarly done for the system of Burgers equations. The

inviscid scaling matrix Si are identical to the ones proposed by Ismail and Roe [8] barring
the extra column and row of zeros. Thus:

Ŝi =

⎡
⎢⎢⎢⎣

ρ̂
2γ

0 0 0

0 (γ−1)ρ̂
γ

0 0

0 0 ρ̂
2γ

0
0 0 0 0

⎤
⎥⎥⎥⎦ , Ŝv =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

K1 K2 K3 K4

K2 K1 K4 K3

⎤
⎥⎥⎦ (56a)

where

K1 = −ρ3/2(ū + 1)

4
(57)

K2 = ρ3/2(ū + 1)

4
(58)

K3 = (1 + ū
2 − ρ̄ū

2 )

4
(59)

K4 = ū(ρ̄ − 1)

8
. (60)

Variables in the terms of K1 − K4 are simple arithmetic averaging of the left and right
states at each interface.

Since entropy is conserved for both the inviscid and viscous variables, entropy production
is generated exclusively from their respective dissipation matrices and their source terms. The
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entropy generation of the system can be determined by analysis on each of its components.
For the inviscid part:

U̇i = [vi ]T f̂i − [ρu] − 1

2
[vi ]T

(
R̂i |Λ̂i Ŝi |R̂T

i [vi ]
)

+ vi · B (61a)

= −1

2

(
[vi ]T R̂i |Λ̂i Ŝi |R̂T

i [vi ]
)

(61b)

≤ 0 (61c)

Meanwhile, for the viscous part:

U̇v = [vv]T f̂v − [vv · fv] + [Fv] − 1

2
[vv]T

(
R̂v|Λ̂vŜv|R̂T

v [vv]
)

+ vv · B (62a)

= −1

2

(
[vv]T R̂v|Λ̂v Ŝv|R̂T

v [vv]
)

− 2
τ 2

Tv

(62b)

≤ 0 (62c)

which guarantees entropy stability for the first-order system of Navier–Stokes equations.

4 Results

Results for the entropy consistent systems approach is compiled in this section. For the
Burgers’ equation model, the first-order versions of the entropy consistent fluxes, ECS1
and ECS2, are compared with the original EC flux that has been augmented with a central-
difference viscosity term as a point of reference. Additionally, the respective exact solutions
are included for the cases of steady-shock and the square wave initial condition. On the
Navier–Stokes equations, the first-order ESS system flux is compared with its predecessors
the ES and EC2 fluxes in the steady shock set-up. A wide range of viscosity coefficients
were used for each case, with the Navier–Stokes flux also subjected to variations in Mach
number. Furthermore, results for the system flux combined with EC1 and EC2 formulations,
named ECS1-NS and ECS2-NS respectively, are also included. Only a few of the results
are shown for brevity, but they are still representative of the prevalent trends of the flux
behavior.

The calculation for the viscous portion of the system fluxes are done similar to the method
used in Nishikawa [14]. For the conventional ES and EC2 fluxes, the central difference
scheme was used to resolve viscosity terms. Second-order spatial discretization is performed
using limited slope reconstruction, whilst second order time marching is done using the
explicit Runge–Kutta method. A summary of abbreviations of the flux functions is available
in Table 1.

The CFL limit for stability highly depends on the viscosity-value being used (ν).
There are established stability results for the conventional advection–diffusion approach
but perhaps it is still in infancy for the hyperbolic-systems approach. Herein we do
not intend to rigorously analyze the stability of the hyperbolic-systems approach. How-
ever, we observed that (for the most part) the C F L used for the system’s approach is
about an order of magnitude larger than for the conventional advection–diffusion approach
and still stability is achieved. This somewhat demonstrates the advantages of using a
fully hyperbolize advection–diffusion model, though it is not the main aspect of this
paper.
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Table 1 Abbreviation key of the flux functions tested

No. Abbreviation Flux function Model Source

1 EC Entropy consistent scheme Burgers’ Ismail and Roe [8]

2 ES Entropy stable scheme Navier–Stokes Ismail and Roe [8]

3 EC1 Entropy consistent scheme 1 Navier–Stokes Ismail and Roe [8]

4 EC2 Entropy consistent scheme 2 Navier–Stokes Ismail and Roe [8]

5 ECS1 Entropy consistent system 1 Hyp Burgers’ Eqs. (26, 34)

6 ECS2 Entropy consistent system 2 Hyp Burgers’ Eqs. (26, 35)

7 ESS-NS Entropy stable scheme Hyp Navier–Stokes Eqs. (50, 52)

8 ECS1-NS Entropy consistent system 1 Hyp Navier–Stokes Eqs. (50, 53)

9 ECS2-NS Entropy consistent system 2 Hyp Navier–Stokes Eqs. (50, 54)
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Fig. 1 Steady shock solution for ECS fluxes with a ν = 10−2, and b ν = 10−1

4.1 Results for Burgers’ Equation Model

Steady shock The fluxes are firstly tested on the simple case of steady shock with initial
condition of:

u(x, 0) =
{

1, if x < 0

−1, if x � 0
(63)

The exact solution, available in Masatsuka [10], is given by:

u =
(

1 − tanh
x

2ν

)
(64)

Results are shown for a viscosity coefficient of 10−2 in Fig. 1a, and a viscosity of 10−1

in Fig. 1b. In these plots, 40 computational cell were used, but the results remain the same
even with finer grid. The boundary conditions on the left and right sides of the domain are
of the non-reflecting type.

For the range of viscosity shown, the system fluxes match closely to the benchmark as well
as the exact solution. As expected, when the viscosity coefficient is increased, the ECS1 and
ECS2 fluxes would become proportionally more diffusive. At the coefficient of ν = 10−2,
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Fig. 2 Solution for square wave initial condition for ECS fluxes with ν = 10−2

we observe that the ECS1 and ECS2 fluxes are marginally less diffusive than the EC. Whilst
at the coefficient of ν = 10−1, all the considered fluxes produce similar results. This trend
has also been observed in Mohammed and Ismail [11].

The underlying cause that drives these results is in the way each of the flux is constructed.
The ECS1 and ECS2 flux’s auxiliary variable that provides diffusion to the system is heavily
dependent on the viscosity coefficient to make its presence felt within the system. At low
viscosities, the low coefficient value means that the auxiliary term has less influence to the
total flux; therefore the ECS1 and ECS2 fluxes provide less dissipation and in turn become a
bit closer to the exact solution than the EC flux coupled with a conventional discrete viscosity
term.

Square wave A similar, yet more difficult test for the fluxes is performed via the deployment
of the square wave initial condition, where:

u(x, 0) =
{

−1, if 1
3 � |x | � 1

1, if |x | < 1
3

(65)

For conciseness, results are shown for a viscosity coefficient of 10−2. Grid size and
boundary conditions are also kept as it was (Fig. 2).

The point of this test case is to see whether the fluxes can avoid capturing the non-physical
rarefaction shock, unlike the Roe flux and most other schemes without entropy control. As
seen in the plots, the ECS1 and ECS2 fluxes behave similarly to the EC flux around the
rarefaction area, which matches the characteristic that we are looking for. The rarefaction fan
for all three fluxes are less steep compared to the solution given by the exact Riemann solver
in the solid line mostly due to the low CFL number used in the simulation. As for the normal
shock region, the ECS1 and ECS2 fluxes exhibit a similar diffusive pattern to the previous
case, with the ECS1 flux being the least diffusive, and the EC flux the most diffusive.
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Fig. 3 Density plot of steady shock for the fluxes at Mach 1.5 with viscosity of a 1e − 7, b 1e − 4, c 1e − 3,
and d 1e − 2

4.2 Results for Navier–Stokes Equation Model

Steady shock Next, the first order system approach is applied in modelling the Navier–Stokes
equations. Similar to Burgers’, the flux is initially tested in the case of steady-state shock
with the Rankine–Hugoniot initial condition:

u0 =
[

f (M0) 1
g(M0)

γ (γ − 1)M2
0

+ 1

2 f (M0)

]
(66a)

f (M0) =
(

2

(γ + 1)M2
0

+ γ − 1

γ + 1

)−1

(66b)

g(M0) = 2γ M2
0

γ + 1
− γ − 1

γ + 1
(66c)

u1 =
[

1 1
1

γ (γ − 1)M2
0

+ 1

2

]
(66d)
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Fig. 4 Density plot of steady shock for the fluxes at Mach 7.0 with viscosity of a 1e − 7, b 1e − 4, c 1e − 3,
and d 1e − 2

The system flux (ESS) is then compared to its predecessors, which are the entropy stable
(ES) flux, and the entropy consistent fluxes of EC1 and EC2 available from Ismail and Roe
[8]. The ES, EC1, and EC2 fluxes are originally derived for the Euler equations; they are
modified here to include central-difference physical viscosity terms that account for viscous
stresses, making them essentially Navier–Stokes equation models. Additionally, results for
the ESS flux combined with the EC1 and EC2 formulation, designated as ECS1-NS and
ECS2-NS respectively, has also been included. Density plots of the said fluxes is shown in
Fig. 3 for a Mach number of Ma = 1.5, Fig. 4 for a Mach number of Ma = 7.0, and Fig. 5
for a Mach number of Ma = 20.0. In Fig. 3b, the exact solution for density is given by
[20] at a viscosity value of 0.00025. A summary of the figures for the results is available in
Table 2.

At low Mach number and low to medium viscosities (Fig. 3a–c), the ESS flux is closer to
the EC1 and EC2 fluxes as opposed to the ES flux. The ESS flux exhibit very little undershoot
even at the lowest viscosity setting. The result is significant since the EC1 and EC2 have
the third entropy production term built in to them, whilst the ECS flux relies only on the
entropy-stable term to provide diffusion. On the other hand, the ESS flux is less diffusive

123



628 J Sci Comput (2015) 63:612–631

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1
RhoECS2

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1
RhoECS2

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1
RhoECS2

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
h o

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1
RhoECS2

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1
RhoECS2

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1
RhoECS2

Position, x

D
en

si
ty

,R
ho

-0.5 -0.25 0 0.25 0.5

1

2

3

4

5

6

RhoESS
RhoES
RhoEC2
RhoECS1-NS
RhoECS2-NS

(a) (b)

(c) (d)

Fig. 5 Density plot of steady shock for the fluxes at Mach 20.0 with viscosity of a 1e − 7, b 1e − 4, c 1e − 3,
and d 1e − 2

Table 2 Summary of figures detailing the result of the Navier–Stokes fluxes

Ma = 1.5 Ma = 7.0 Ma = 20.0

ν = 1.0 × 10−7 Figure 3a Figure 4a Figure 5a

ν = 1.0 × 10−4 Figure 3b Figure 4b Figure 5b

ν = 1.0 × 10−3 Figure 3c Figure 4c Figure 5c

ν = 1.0 × 10−2 Figure 3d Figure 4d Figure 5d

than others at high viscosity, as seen in Fig. 3d. In this condition, the ESS flux is closer to the
ES and EC1 flux compared to EC2, suggesting that the ECS flux would be less susceptible to
problems related to over-diffusion. Additionally, the ECS1-NS and ECS2-NS fluxes are also
found to be less diffusive then their conventional counterpart EC2. Perhaps this is due to the
overall diffusion process based on wave-characteristics for the hyperbolic-systems which is
known to be minimally diffusive. However, ECS1-NS and ECS2-NS are more diffusive than
the ESS method (Fig. 6).
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Fig. 6 Second order density plot of steady shock for the fluxes in the case of a Ma = 1.5, ν = 1e − 7, b
Ma = 1.5, ν = 1e − 2, c Ma = 20.0, ν = 1e − 7, and d Ma = 20.0, ν = 1e − 2

The pattern becomes a little different as the Mach number is increased as in Figs. 4 and 5.
In the said plots, the EC2 flux can be seen as being significantly more diffused than the
other ones. This is most probably due to the the additional entropy production of the EC2
flux being dependent on Mach number. The ESS is observed to still have a small amount of
undershoot at low viscosity, but the undershoot is a bit less than the ES flux. The undershoot
is gradually decreased as the viscosity coefficient value is increased. At high viscosity, the
ESS flux is comparable to the EC1 flux. Again, the ECS1-NS and ECS2-NS fluxes are a
little more diffusive than ESS, but less so than EC2. Overall, the dependence on numerical
viscosity to achieve entropy–consistency is less when the physical viscosity is increased.

5 Concluding Remarks

The first-order hyperbolic systems approach has been incorporated with elements of entropy
stability and consistency to create new flux functions. For the Burgers’ equation model, a
new entropy pair has been chosen to include both inviscid and viscous terms. For the fluxes
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approximating the Navier–Stokes equations, hyperbolic discretization of viscosity terms is
done separately from inviscid terms so that the physical (or mathematical) entropy still
remains a dominant feature for the overall entropy–stability and entropy–consistency control.
The additional entropy function for the viscous terms are created to ensure some form of
entropy–stability is also achieved for hyperbolic discretization of the physical viscosity. The
new fluxes have been shown to provide comparable results to older methods for a range of
viscosity levels. However, the Navier–Stokes fluxes are still incomplete due to the omission
of heat transfer effects. Due to their respective signs, the entropy generation from heat transfer
would oppose that of the rest of the system, affecting the entropy stability and consistency of
the system as a whole. Thus, considerable work is still required to explore the full potential
of this approach.
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Appendix 1: Entropy Conserving Flux

The entropy conserving flux fi from Eq. (50) satisfies

vTfi = [ρu] (67)

and is calculated based on averaged quantities of

fi (uL , uR) =
⎡
⎣ ρ̂û

ρ̂û2 + p̂1

ρ̂û Ĥ

⎤
⎦ (68)

To determine the averaged quantities, we firstly define z1 =
√

ρ
p , z2 =

√
ρ
p u, z3 = √

ρp.

The averaged quantities are composed from functions of arithmetic mean ā = aL+aR
2 and

logarithmic mean as defined in “Appendix 2”. Based on Eq. (67), the quantities used in the
flux are as follows

û = z̄2

z̄1
, ρ̂ = z̄1zln

3 , p̂1 = z̄3

z̄1
, p̂2 = γ + 1

2γ

zln
3

zln
1

+ γ − 1

2γ

z̄3

z̄1
(69)

â =
(

γ p̂2

ρ̂

) 1
2

, Ĥ = â2

γ − 1
+ û2

2
(70)

Appendix 2: Logarithmic Mean

Let ζ = aL
aR

. Define aln(L , R) = aL+aR
ln(ζ )

ζ−1
ζ+1 where ln(ζ ) = 2(

1−ζ
1+ζ

+ 1
3

(1−ζ )3

(1+ζ )3 + 1
5

(1−ζ )5

(1+ζ )5 +
1
7

(1−ζ )7

(1+ζ )7 + O(ζ 9)). To calculate the logarithmic mean we use the following subroutine:

1. Set the following: ζ = aL
aR

, f = ζ−1
ζ+1 , u = f ∗ f

2. If (u < ε)

F = 1.0 + u/3.0 + u ∗ u/5.0 + u ∗ u ∗ u/7.0
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3. Else

F = ln(ζ )/2.0/( f )

thus

aln(L , R) = aL + aR

2F
, ε = 10−2
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